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Dynamic behavior of the critical 2 attractor at the accumulation point of period doubling in the
one-dimensional map x, +;=x,exp[ 4(1—x, )] is studied by the sum of the local expansion rates S, (x;)
of nearby orbits. The variance {[S,(x)]*) exhibits self-similar structure. Critical bifurcations such as
band merging, crisis, and intermittency are studied in terms of o ,(q)—the variance of fluctuations of the

coarse-grained local expansion rates of nearby orbits.

PACS number(s): 05.45.+b

Even though chaotic attractors look very complicated,
they contain order. The fractal dimension and Lyapunov
exponent describe only their global scaling structures.
The structures of chaotic attractors are built up by the
expanding and folding processes of chaotic orbits. Both
theoretically and experimentally, it has been indicated
that the structures of chaotic attractors can be character-
ized by the generalized dimensions D (q) and the singu-
larity spectra f(a) of the natural invariant measures
[1-4]. The most important concept of chaos would be or-
bital instability due to the exponential separation of near-
by orbits in phase space, which leads to a positive
Lyapunov exponent A® for chaotic orbit. Orbital insta-
bility brings about sensitive dependence on its initial
point and mixing of orbits leading to loss of memory in
chaos.

Recently, the features associated with the fluctuation
of local expansion rates of various attractors have been
studied [5-9]. Chaotic attractors have various local
structures depending on their routes of onset and evolu-
tion. Particularly, bifurcations of chaos change the struc-
tures of chaotic attractors drastically, so that the local
structures produce singularity of the natural invariant
measure and create the coherent large fluctuations of
coarse-grained expansion rates A. Such a local structure
is called a singular local structure. The mean value of
A, (x,) that is equal to A® cannot describe singular local
structures. The local structures produce coherent large
fluctuations of coarse-grained local expansion rates
A, (x;) around the positive Lyapunov exponent. There-
fore, studying the fluctuations of A,(x;) around A® is
very important.

In this Brief Report we study the singular local struc-

tures of chaotic attractors of the one-dimensional map
[10,11]

X, 41=x,exp[4(1—x,)] 1)

at various bifurcation points, and show that they can be
characterized by the dynamic structure function o ,(q),
the variance of fluctuations of A,(x;) around A,(q),
(— o0 <g < ®). We have calculated o, (q) for parametric
values far away and near the bifurcations, such as band

1063-651X/95/52(3)/3234(4)/$06.00 52

merging, intermittency, and crisis. For all the chaotic at-
tractors of (1) the o,(q) versus g plot exhibits a peak at
q =q,. We show that additional peaks, however, occur
only for the attractors just before and after the bifurca-
tions.

For an orbit {x,} {n=1,2,...} of a one-dimensional
map x,,=f(x,), the one-dimensional local expansion
rates A(x ) are given by

Alx,)=In|df (x,)/dx,]| . 2

In map (1), as the control parameter 4 is varied we find
several points at which chaotic attractors make drastic
changes. The map exhibits a cascade of period doubling
to chaos when A is increased from a small value. This
cascade accumulates at the critical point
A=A4,~2.6923689003... at which the attractor be-
comes a critical 2% attractor. For this attractor the sum
of the local expansion rates of nearby orbits over time 7 is
given by

CS(x )= Ax), n=12,... . (3)

t=1

For (1) S, takes the form

S,,(xl)=iln|(1-—Ax,)exp[A(l—x,)]| . (4)

t=1

The sum S, (x,) fluctuates with n, depending upon the in-
itial value x;. The coarse-grained local expansion rate is
given by

An(xl)ZSn(xl)/n=(1/n)éA(x,) . (5)

t=1

The rate A,(x,) takes different values between a max-
imum value A, ., and minimum value A, ,;, depending
on the initial point x;. As n—, A,(x) converges to a
positive Lyapunov exponent A®, which is independent of
x, for almost all values of x; within the basin of attrac-
tion of the attractor. For a chaotic orbit S,(x;) grows
with n for large n. However, for the critical 2* attractor
at A=A, A® is zero, indicating that the attractor has
no mixing and S,(x;) grows, at most, less than linear
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with n. We consider the variance

N
([S,(x)=nA®)=(1/N) 3, [S,(x,,)—nA®]*.  (6)

m=1

For A = A_, the Lyapunov number A* is zero and the
variance has an interesting behavior. Figure 1 shows the
variance as a function of log,n, where N is taken as 21,
The plot shows a fascinating temporal structure. The
m™ block lying between log,n =m and log,n =m +1,
m =0,1,2, ... consists of 2" *! points. As m increases
the block exhibits a self-similar pattern. Thus the initial
memory lasts infinitely without mixing and creates the
self-similar temporal structure.

Next, we study the chaotic attractors of (1) near vari-
ous bifurcations in terms of the g-phase transitions. The
probability density for A, (x,) to take a value around A is
given by

P(A;n)=(8[A,(x)—A],
where 8(f) is the delta function of f and { ) denotes the

long time average. The probability density function takes
the scaling form [12-15]

P(A;n)=exp{ —nW¥Y(A)}P(A®;n) (7

for n— o, and W(A) is a concave function of A and
takes minimum value zero at A=A%®. To describe the
fluctuations of the local expansion rates consider the par-
tition function

Z,(g)=(exp[—n(g—1)A,(x,)]) (—w<g<w),

the temporal scaling exponent
¢,(¢)=—(1/n)nZ,(q) , 9)
and its derivatives ’
A,(q)=d¢,(q)/dq
=[1/Z,(q)]
XA, (x)exp[—n(g—1)A,(x,)]), (10
o,(g)=—dA,(q)/dg
=[n/Z,(Q[A,(x)—A, (]
Xexp[—n(g—1A,(x)]) . (11
where { ) denotes the long time average
(G(x,))=1}Enw(l/N)iélG(xi) .

0,(q) is the variance of fluctuations of A,(x,) around
A,(g). For g=1 ¢,(1) become zero and A,(1)=A%.
Further, A,()=A, ., and A, (—o)=A, ... There-
fore, A,(q) and o,(g) with ¢ > 1 and ¢ <1 can explicitly
describe negative and positive large fluctuations of
A, (x), respectively. The dynamical structure function
o,(q) is computed numerically for the critical attractors
of the map (1).
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FIG. 1. Variance {[S,(x)]*) versus log,n for the critical 2*
attractor of (1), where 4 = A =2.692 368 900 3 and N =2000.

The map (1) exhibits band merging bifurcation as 4 is
increased from A4,. Band merging is found to occur at
A=A4,~2.83315505.... Figure 2(a) shows the dy-
namic structure function o,(q) at 4 =2.8, far from the
band merging bifurcation point 4 = 4,. The g-weighted
variance o,(q) has only one peak at ¢ =¢q,=1.3. At
A =2.832, just before the merging, o,(q) exhibits two
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FIG. 2. Dynamic structure function for 4 =2.8 (a) far from
the band merging bifurcation and for 4 =2.832 (b) just before
the band merging, where n =100 and N =8000.
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FIG. 3. o,(q) versus q for (a) 4 =3.1024, far from the crisis,
and (b) for 4 =3.102438, just before crisis, where n» =21 and
N =8000.

peaks at g, =1.65 and gz=0.35, as shown in Fig. 2(b).
Two peaks are observed at the band merging and also just
after the band merging.

Next, we consider the crisis, the sudden destruction of
a chaotic attractor. A chaotic attractor exists for
A <A;~3.1024395.... At A = A, the chaotic attrac-
tor suddenly disappears and a period-3 window is found.
The dynamic structure functions far from and just before
the crisis are depicted in Figs. 3(a) and 3(b), respectively,
where n =21 and N =8000. At A =3.1024, far from the
crisis, o,,(g) has a single peak at ¢ =q,=0.7. Just before
the crisis two peaks occur at ¢ =¢q,=0.55 and gg=2.7,
as shown in Fig. 3(b).

Finally, we consider the intermittency region. In map
(1) type III intermittent chaos is observed when A4 is in-
creased from 3.6276701. At A;~3.6276720 fully
developed chaotic motion is found. Figure 4(a) shows
o,(g) versus q for 4 =3.62767, just below A4;. o,(q)
has three peaks at g, =2, gs=1.1, and q3=0.075. Fig-
ure 4(b) shows the result for 4 =3.627 676, far after in-
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FIG. 4. 0,(q) versus g with n =100 and N =8000. (a) In the
intermittent chaos region, where 4 =3.627 67. (b) Far after the
intermittent chaos, where 4 =3.627 676.

termittency; o, (q) has only one peak at ¢ =¢,=0.9.

In summary, it is shown that at the accumulation of
period doubling phenomena the variance
([S,(x)—nA®]*) exhibits self-similar temporal struc-
ture. Further, the large fluctuations of the coarse-grained
local expansion rates of nearby orbits near certain critical
bifurcations is also studied. The chaotic attractors just
near the bifurcations such as band merging, sudden de-
struction, and intermittency have singular local struc-
tures that produce large fluctuations of the coarse-
grained local expansion rates A, and consequently, addi-
tional peaks are found to occur in the o ,(q) versus g plot.
Thus, it turns out that o,(q) is useful for characterizing
the chaotic attractors at their bifurcation points.
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